AC会议论文平台致力于为国际学术会议组织者及参与者提供高效、稳定的全流程论文管理服务。我们支持论文提交、评审、收录和出版等环节,保障学术交流的严谨与顺畅。
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
MICRO: International Symposium on Microarchitecture | A类 | 2025 | 2025-10-18 |
SC: International Conference for High Performance Computing, Networking, Storage, and Analysis | A类 | 2025 | 2025-11-16 |
EuroSys: European Conference on Computer Systems | A类 | 2026 | 2026-04-13 |
ICCAD: International Conference On Computer Aided Design | B类 | 2025 | 2025-10-26 |
PACT: International Conference on Parallel Architectures and Compilation Techniques | B类 | 2025 | 2025-11-03 |
Performance: International Symposium on Computer Performance, Modeling, Measurements and Evaluation | B类 | 2025 | 2025-11-11 |
SPAA: ACM Symposium on Parallelism in Algorithms and Architectures | B类 | 2025 | 2026-07-28 |
MASCOTS: Modeling, Analysis, and Simulation On Computer and Telecommunication Systems | C类 | 2025 | 2025-10-21 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
MobiCom: ACM International Conference on Mobile Computing and Networking | A类 | 2025 | 2025-11-01 |
MobiHoc: International Symposium on Mobile Ad Hoc Networking and Computing | B类 | 2025 | 2025-10-27 |
IMC: Internet Measurement Conference | B类 | 2025 | 2025-10-28 |
CoNEXT: ACM International Conference on emerging Networking EXperiments and Technologies | B类 | 2025 | 2025-12-01 |
MASS: IEEE International Conference on Mobile Adhoc and Sensor Systems | C类 | 2025 | 2025-10-06 |
LCN: IEEE Conference on Local Computer Networks | C类 | 2025 | 2025-10-12 |
MSWiM: International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems | C类 | 2025 | 2025-10-27 |
Globecom: IEEE Global Communications Conference, incorporating the Global Internet Symposium | C类 | 2025 | 2025-12-08 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
CCS: ACM Conferenceon Computer and Communications Security | A类 | 2025 | 2025-10-13 |
NDSS: Network and Distributed System Security Symposium | A类 | 2026 | 2026-02-23 |
RAID: International Symposium on Research in Attacks, Intrusions, and Defenses | B类 | 2025 | 2025-10-19 |
TCC: Theory of Cryptography Conference | B类 | 2025 | 2025-12-01 |
ASIACRYPT: Annual International Conference on the Theory and Application of Cryptology and Information Security | B类 | 2025 | 2025-12-08 |
ACSAC: Annual Computer Security Applications Conference | B类 | 2025 | 2025-12-09 |
ICICS: International Conference on Information and Communications Security | C类 | 2025 | 2025-10-29 |
ICDF2C: International Conference on Digital Forensics & Cyber Crime | C类 | 2025 | 2025-11-17 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
OOPSLA: Conference on Object-Oriented Programming Systems, Languages, and Applications | A类 | 2025 | 2025-10-12 |
SOSP: ACM Symposium on Operating Systems Principles | A类 | 2025 | 2025-10-13 |
ICSME: International Conference on Software Maintenance and Evolution | B类 | 2025 | 2025-10-07 |
ICFP: International Conference on Functional Programming | B类 | 2025 | 2025-10-12 |
SAS: International Static Analysis Symposium | B类 | 2025 | 2025-10-13 |
ISSRE: International Symposium on Software Reliability Engineering | B类 | 2025 | 2025-10-21 |
Middleware: ACM/IFIP/USENIX International Middleware Conference | B类 | 2025 | 2025-12-15 |
APLAS: Asian Symposium on Programming Languages and Systems | C类 | 2025 | 2025-10-27 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
CIKM: Conference on Information and Knowledge Management | B类 | 2025 | 2025-11-10 |
ICDM: IEEE International Conference on Data Mining | B类 | 2025 | 2025-11-12 |
CIDR: Biennial Conference on Innovative Data Systems Research | B类 | 2026 | 2026-01-18 |
WSDM: International Conference on Web Search and Data Mining | B类 | 2026 | 2026-02-22 |
ICDT: International Conference on Database Theory | B类 | 2026 | 2026-03-24 |
ER: International Conference on Conceptual Modeling | C类 | 2025 | 2025-10-20 |
ADMA: International Conference on Advanced Data Mining and Applications | C类 | 2025 | 2025-10-22 |
ECIR: European Conference on Information Retrieval | C类 | 2026 | 2026-03-30 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
FOCS: IEEE Symposium on Foundations of Computer Science | A类 | 2025 | 2025-12-14 |
FMCAD: Formal Methods in Computer-Aided Design | C类 | 2025 | 2025-10-06 |
FSTTCS: Foundations of Software Technology and Theoretical Computer Science | C类 | 2025 | 2025-12-17 |
CSL: Computer Science Logic | C类 | 2026 | 2026-02-23 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
ACM MM: ACM International Conference on Multimedia | A类 | 2025 | 2025-10-27 |
IEEE VIS: IEEE Visualization Conference | A类 | 2025 | 2025-11-02 |
ISMAR: International Symposium on Mixed and Augmented Reality | B类 | 2025 | 2025-10-08 |
SPM: Symposium on Solid and Physical Modeling | B类 | 2025 | 2025-10-29 |
PRCV: Chinese Conference on Pattern Recognition and Computer Vision | C类 | 2025 | 2025-10-16 |
SMI: Shape Modeling International | C类 | 2025 | 2025-10-29 |
VRST: ACM Symposium on Virtual Reality Software and Technology | C类 | 2025 | 2025-11-12 |
MMAsia: ACM Multimedia Asia | C类 | 2025 | 2025-12-09 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
ICCV: International Conference on Computer Vision | A类 | 2025 | 2025-10-19 |
NIPS: Annual Conference on Neural Information Processing Systems | A类 | 2025 | 2025-12-02 |
ECAI: European Conference on Artificial Intelligence | B类 | 2025 | 2025-10-25 |
EMNLP: Conference on Empirical Methods in Natural Language Processing | B类 | 2025 | 2025-11-05 |
ICAPS: International Conference on Automated Planning and Scheduling | B类 | 2025 | 2025-11-09 |
KR: International Conference on Principles of Knowledge Representation and Reasoning | B类 | 2025 | 2025-11-11 |
IROS: IEEE\RSJ International Conference on Intelligent Robots and Systems | C类 | 2025 | 2025-10-19 |
PRICAI: Pacific Rim International Conference on Artificial Intelligence | C类 | 2025 | 2025-11-17 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
UbiComp: ACM International Joint Conference on Pervasive and Ubiquitous Computing | A类 | 2025 | 2025-10-14 |
CSCW: ACM Conference on Computer Supported Cooperative Work and Social Computing | A类 | 2025 | 2025-10-18 |
CSCW: ACM Conference on Computer Supported Cooperative Work and Social Computing | A类 | 2026 | 2026-02-27 |
ICMI: International Conference on Multimodal Interaction | C类 | 2025 | 2025-10-13 |
ASSETS: International ACM SIGACCESS Conference on Computers and Accessibility | C类 | 2025 | 2025-10-29 |
MobiQuitous: International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services | C类 | 2025 | 2025-11-07 |
CollaborateCom: CollaborateCom International Conference on Collaborative Computing | C类 | 2025 | 2025-11-15 |
DIS: ACM conference on Designing Interactive Systems | C类 | 2026 | 2026-06-13 |
名称 | 类别 | 年份 | 开会日期 |
---|---|---|---|
RTSS: Real-Time Systems Symposium | A类 | 2025 | 2025-12-02 |
WWW: International World Wide Web Conferences | A类 | 2026 | 2026-04-13 |
BIBM: IEEE International Conference on Bioinformatics and Biomedicine | B类 | 2025 | 2025-12-15 |
AMIA: American Medical Informatics Association Annual Symposium | C类 | 2025 | 2025-11-15 |
Researchers have developed an innovative approach to predict the working status of high-formwork support systems (HFSS) by combining finite element model (FEM) simulations with deep learning and large language models (LLMs). Published in *Smart Construction*, this study addresses the challenges of structural health monitoring (SHM) by leveraging a genetic algorithm (GA)-optimized FEM to generate training data for a convolutional neural network (CNN) classifier. The framework also integrates a Retrieval-Augmented Generation (RAG) model with a knowledge graph (KG) to automatically generate reasonable SHM reports for HFSS, demonstrating superior performance over common methods.
image: The proposed framework integrates FEM simulations, CNN classification, and an RAG model for automated SHM reporting, achieving high accuracy in structural status prediction and report generation for HFSS.
Credit: Linlin Zhao/Beijing University of Technology, Jasper Mbachu/Bond University, Siyu Liu/Beijing University of Technology, Rongtian Zhang/Beijing University of Technology
High-formwork support systems (HFSS) are critical in construction but prone to collapses due to inadequate monitoring. Common methods rely on expensive and complex experiments, limiting their practicality. This study proposes a data-driven solution using FEM simulations and deep learning to predict HFSS working statuses—normal, local instability, and fully unstable—with high accuracy.
The research begins with developing and optimizing an FEM of an HFSS using a genetic algorithm (GA) to minimize discrepancies between simulated and experimental data. The optimized FEM generates datasets for training a CNN classifier, which achieves an impressive accuracy in predicting structural statuses. Experimental validation on a full-scale HFSS confirms the CNN's superiority over support vector machines (SVM), with the CNN outperforming SVM in classification tasks.
To streamline SHM reporting, the study introduces a Retrieval-Augmented Generation (RAG) model, combining GPT-4 with a domain-specific knowledge graph (KG). The RAG model generates detailed SHM reports, evaluated using metrics like BLEU, ROUGE, and cosine similarity, demonstrating its effectiveness in producing accurate and contextually relevant reports compared to standalone GPT-4.
Key contributions of the study include:
1. A GA-optimized FEM for generating reliable training data under varied HFSS conditions.
2. A CNN classifier with high accuracy in predicting structural statuses.
3. An RAG model that automates SHM report generation, reducing reliance on subjective expertise.
The framework's potential applications extend to complex structures, with future work focusing on integrating multimodal models and edge computing for broader deployment.
This paper, "Working Status Prediction for a High-Formwork Support System Using Finite Element Model-Informed Deep Learning and GPT-Aided Method," was published in Smart Construction.
Zhao L, Mbachu J, Liu S, Zhang R. Working Status Prediction for a High-Formwork Support System Using Finite Element Model-Informed Deep Learning and GPT-Aided Method. Smart Constr. 2025(2):0015, https://doi.org/10.55092/sc20250015.
Source from [https://www.eurekalert.org/news-releases/1090156].
Researchers have developed a revolutionary non-invasive method combining 3D laser scanning technology and sensor data time-series analysis for identifying defective water treatment filters, achieving significant reductions in inspection time and labor costs while eliminating operational disruptions. Published in Smart Construction, this breakthrough has the potential to transform water treatment facility maintenance, ensuring safer and more efficient water processing by detecting subsurface structural defects through surface geometric changes and operational anomalies.
image: The multi-dimensional data interpretation framework integrates upside-down 3D laser scanning, SCADA sensor data analysis, and CFD simulation validation, tested on actual water treatment filters during backwash operations. The framework features non-invasive detection through geometric feature analysis and time-series pattern recognition, achieving reliable identification of subsurface structural defects. This system could be applied in smart water treatment facilities for automated filter health monitoring, predictive maintenance, and optimized backwash operations.
Credit: Pengkun Liu/Carnegie Mellon University, Jinghua Xiao/Circular Water Solution LLC, Pingbo Tang/Carnegie Mellon University,
Water treatment filters serve as the final physical barrier for removing suspended solids and pathogens, making their structural integrity crucial for effective water treatment and public health protection. However, traditional filter inspection methods require manual disruption of filter media, are time-consuming and labor-intensive, involving at least two personnel for several hours, and risk overlooking defects due to limited sampling areas. Addressing this challenge, Dr. Pengkun Liu and Professor Pingbo Tang from Carnegie Mellon University, in collaboration with researchers from Circular Water Solution LLC, has developed a state-of-the-art multi-dimensional data interpretation framework that revolutionizes water treatment filter monitoring without operational interruptions.
"This framework design marks a critical advancement in water treatment facility maintenance," explains Professor Pingbo Tang. "Our central hypothesis is that when subsurface structural irregularities disrupt normal backwash operations and flow patterns, they produce both visible surface deformations and distinctive anomalies in sensor data, enabling non-invasive defect detection."
The newly developed framework utilizes upside-down installed 3D laser scanners to capture high-precision geometric changes on filter media surfaces before and after backwash processes. Lead researcher Pengkun Liu emphasizes, "The integration of geometric feature analysis—including roughness, curvature, omnivariance, and planarity—with time-series sensor data significantly enhances detection accuracy while eliminating the need for invasive media disruption."
A major challenge in filter inspection has been the inability to detect subsurface defects like uneven gravel support beds, mud ball formation, or underdrain blockages without disrupting operations. The team addressed this by developing a comprehensive four-module architecture: data acquisition through 3D laser scanning and SCADA sensor monitoring, geometric analysis using advanced clustering methods, time-series analysis of operational parameters, and fusion diagnosis validated by computational fluid dynamics simulations.
The framework, tested extensively at the Shenango Water Treatment Plant in Pennsylvania across six filter units, underwent rigorous validation over multiple operational cycles. Led by Jinghua Xiao from Circular Water Solution, the team demonstrated that the system effectively identifies abnormal filters through surface elevation irregularities, geometric feature variations, and operational parameter anomalies. Their measurements confirmed that defective filters exhibit distinctive patterns: surface elevation differences, higher geometric feature values, longer backwash durations, elevated turbidity levels, and reduced water production rates.
In practical applications, the framework successfully identified Filter 2 as defective, showing consistent surface bulging patterns across multiple scans, abnormal geometric characteristics, and suboptimal operational performance. These findings were validated through CFD simulations, which confirmed that subsurface defects like mud balls or dead zones disrupt uniform flow distribution from bottom drainage pipes, causing uneven surface deformations. The repeatability tests demonstrated high consistency in defect detection, proving the system's reliability in real-world water treatment settings.
"This framework has the potential to significantly impact the development of smart water treatment systems and infrastructure monitoring applications," says co-researcher Jinghua Xiao. "Its non-invasive nature and comprehensive multi-modal approach could lead to safer, more cost-effective, and more reliable maintenance practices for water treatment facilities worldwide."
In addition to water treatment applications, the techniques developed in this framework could inspire innovations in other infrastructure monitoring settings requiring precise subsurface defect detection, such as advanced pipeline inspection, industrial filtration systems, and civil infrastructure health monitoring.
The multi-dimensional data interpretation framework achieves exceptional performance through its innovative combination of 3D geometric analysis and sensor data fusion. It operates effectively with millimeter-level precision in surface change detection and real-time operational parameter monitoring, offering both geometric and time-series anomaly detection capabilities. "This approach establishes quantitative relationships between surface irregularities and subsurface defects, setting a new standard for non-invasive infrastructure inspection," notes Professor Pingbo Tang.
While the team acknowledges the need for expanding the dataset to more water treatment facilities and developing real-time monitoring systems, this study represents a critical step toward more efficient, safer, and more reliable water treatment operations. Future research directions include integrating 3D LiDAR sensors directly into filter structures for continuous monitoring and developing adaptive backwash control systems based on real-time surface geometry analysis.
This paper ”Multi-dimensional data interpretation for defective filter identification” was published in Smart Construction.
Liu P, Xiao J, Tang P. Multi-dimensional data interpretation for defective filter identification. Smart Constr. 2025(2):0014, https://doi.org/10.55092/sc20250014.
Source from [https://www.eurekalert.org/news-releases/1089689].
A team of Italian researchers has uncovered compelling evidence of anomalous radioactive decay in cobalt-57 (Co-57) under ultrasonic stimulation, offering strong experimental support for the Deformed Space-Time (DST) theory. The findings, published by Stefano Bellucci (INFN-Frascati) and Fabio Cardone (ISMN-CNR), suggest that brief ultrasonic exposure can trigger a departure from conventional exponential decay laws, mediated by energy-dependent space-time distortions that violate local Lorentz invariance (LLI).
image: Ultrasound triggers anomalous Co-57 decay via Deformed Space-Time effects. Just nanoseconds of sonication induce non-classical nuclear transformations, offering new evidence for Lorentz Invariance violation and metric-dependent nuclear reactions.
Credit: Stefano Bellucci/INFN-LNF, Italy
In a groundbreaking study exploring the frontier between nuclear physics and space-time geometry, Stefano Bellucci and Fabio Cardone report anomalous radioactive decay behavior in the isotope cobalt-57 (Co-57) when exposed to ultrasound at 2.25 MHz. This unexpected deviation from the standard exponential decay curve—specifically in the 14.4 keV Fe-57 emission line—is interpreted through the lens of Deformed Space-Time (DST) theory, which posits that under certain energy conditions, nuclear processes occur in a locally non-Minkowskian metric.
"Only a few nanoseconds of ultrasonic activation—less than one percent of a single wave cycle—are enough to trigger measurable effects consistent with a deformed space-time," explains Bellucci. These effects include enhanced transformation of Co-57 nuclei without traditional radioactive decay emissions, suggesting an alternative, non-weak-interaction-driven nuclear transformation.
At the heart of the study lies the hypothesis that Ridolfi cavities—microcavities formed under ultrasonic stress—act as "nuclear micro-reactors," enabling strong-interaction pathways not accessible under standard conditions. This dual-path decay mechanism, combining traditional weak decay with DST-induced transformation, offers a radical reinterpretation of nuclear stability and decay in dynamic fields.
Notably, the research draws parallels to previous DST-based experiments conducted by the same team involving isotopes like thorium-228 (Th-228) and nickel-63 (Ni-63), where cavitation led to significant reductions in radioactivity. The new findings from the Hagelstein-type experiment with Co-57 serve as an independent confirmation, revealing persistent metric deformation effects (latency) and energy coupling between fields—phenomena consistent with the so-called Mignani mimicry.
“This work challenges the long-held assumption that radioactive decay is immutable under classical field exposure,” says Cardone. “If space-time itself can deform in response to external stress, our understanding of fundamental interactions—and their constraints—must be revisited.”
The authors emphasize that the observed decay anomalies imply a deeper violation of Local Lorentz Invariance, hinting at broader implications for causality and even the constancy of the speed of light. Future experiments are proposed to determine whether the observed transformations result from an increase in decay rate—or a true metamorphosis of nuclear identity, absent radiation emission.
As a forward-looking application, the authors propose real-time radioactivity monitoring during sonication. “If sonication leads to more radiation, it implies faster decay,” notes Bellucci. “If not, we are looking at a fundamentally different reaction altogether.”
This study opens new avenues in nuclear science, cosmology, and the physics of space-time—where matter, energy, and geometry may interact more dynamically than previously imagined.
This paper ”On anomalous radioactive decay according to the energy metrics formalism in the Deformed Space-Time (DST) theory” was published on 30 June 2025 in ELSP Asymmetry.
Stefano Bellucci and Fabio Cardone, On anomalous radioactive decay according to the energy metrics formalism in the Deformed Space-Time (DST) theory. Asymmetry 2025(1):0005, https://doi.org/10.55092/asymmetry20250005.
Source from [https://www.eurekalert.org/news-releases/1090173].
Researchers from Nanyang Technological University have developed a novel framework that integrates worker self-reportsaZ with objective expert evaluations to address the challenge of validating human reliability models. They also proposed a new hybrid inference model combining Self-Organizing Maps (SOM) and Bayesian Networks (BN) to more accurately predict worker performance and identify potential failures. Published in Smart Construction, this research transcends the limitations of traditional expert-driven methods, offering a validated, data-driven approach to enhance workplace safety and operational efficiency in the high-risk construction industry.
image: The proposed framework for human performance reliability evaluation consists of three phases. First, data is obtained via subjective worker self-assessments and objective expert evaluations. Second, the data is preprocessed using rank standardization and fuzzy set theory to derive an adjusted reliability score for Common Performance Conditions (CPCs) . Finally, in the prediction phase, a SOM-BN inference engine uses this score to predict the workers' control modes.
Credit: Yamo Cao/Nanyang Technological University, Zeren Jin/Nanyang Technological University, Yuguang Fu/Nanyang Technological University
The construction industry is recognized as one of the most hazardous sectors, with human error being a primary cause of most workplace accidents. To assess and mitigate these risks, Human Reliability Analysis (HRA) methods are employed, with second-generation techniques like the Cognitive Reliability and Error Analysis Method (CREAM) being prominent for their focus on cognitive and contextual factors. However, traditional CREAM models suffer from significant limitations: they rely heavily on subjective expert judgment, lack independent ground-truth for validation, and often oversimplify the complex, non-linear interactions between performance-shaping factors .
To overcome these challenges, Yamo Cao, Zeren Jin, and Assistant Professor Yuguang Fu from Nanyang Technological University proposed a comprehensive framework for data collection and a new hybrid model for prediction. The proposed framework consists of two main components: A Unified Data Collection and Processing Framework and A Hybrid SOM-BN Inference Engine.
The Unified Data Collection and Processing Framework brings together subjective worker self-assessments and objective expert evaluations. To process subjective data, the researchers introduced the Contextual Human Reliability Score (CHRS), which applies fuzzy logic and rank-standardization to worker self-reports, effectively reducing bias and creating a robust input metric. The objective data, consisting of expert observations of worker performance, serves as the independent ground truth for model validation.
The Hybrid SOM-BN Inference Engine uses a two-stage process. First, a Self-Organizing Map (SOM), an unsupervised clustering technique, analyzes the CHRS data to identify complex and non-linear patterns among the various performance conditions. Second, these empirically derived clusters are fed into a Bayesian Network (BN), which performs transparent probabilistic inference to predict the worker's performance control mode (e.g., effective or ineffective).
To validate the framework, the researchers conducted a case study on a construction site, collecting data from 35 workers. The results were compelling: the proposed SOM-BN model demonstrated high accuracy (88.57%) and specificity in its predictions. In stark contrast, traditional CREAM models, when applied to the same dataset, were unable to effectively distinguish between safe and unsafe performance, highlighting their limitations in this real-world context. Furthermore, the use of explainability tools like SHAP provided clear insights into individual worker performance, making the model's predictions actionable.
In the future, the research team plans to expand the dataset to include a more diverse worker population and apply the framework to other industries, further demonstrating its broad applicability in improving human reliability and safety.
This paper ”A new hybrid inference model for human performance reliability prediction: a case study of construction workers” was published in Smart Construction.
Cao Y, Jin Z, Fu Y. A new hybrid inference model for human performance reliability prediction: a case study of construction workers. Smart Constr. 2025(3):0016, https://doi.org/10.55092/sc20250016.
Source from [https://www.eurekalert.org/news-releases/1090734].
判断一篇文章是否被EI(Engineering Village)检索,最可靠的方法是进行官方或权威查询。这里为您总结了一套从“快速初步判断”到“最终权威确认”的完整方法。
方法一:最权威、最可靠的方法(首选)
通过Engineering Village(EI Compendex)官方平台查询。
EI Compendex是EI的官方数据库,只有在这里能查到,才算被EI检索。这通常需要通过大学或研究机构的图书馆网站访问。
操作步骤:
1. 访问入口:通过您所在大学或机构的图书馆网站,找到“数据库”或“电子资源”列表,然后找到“Engineering Village”或“EI Compendex”并点击进入。
2. 精确搜索:在Engineering Village的搜索框中,输入您要查询文章的标题(建议复制粘贴原文标题),选择“Title”字段,然后点击搜索。
小技巧:为了更精确,可以同时加上第一作者姓名进行限定。
3. 查看结果:
如果能搜到,并且记录详情中明确标注了 “Database: Compendex”,那么这篇文章就是被EI检索的。
如果搜不到,或者记录显示为 “Database: Inspec”(这是另一个著名的数据库,与EI同在Engineering Village平台),则说明这篇文章未被EI检索。
方法二:快速初步判断法(适用于日常)
在去官方平台查询之前,可以通过以下方法进行快速、大致的判断。
1. 查看期刊/会议论文集是否被EI收录
一篇文章被EI检索的前提是,它发表的期刊或会议论文集被EI收录。
对于期刊文章:
访问期刊的官方网站或投稿页面。
通常在“About This Journal”、“Indexing”或“Abstracting and Indexing”栏目下,会列出该期刊被哪些数据库收录。如果列表中包含 “EI Compendex”、“Engineering Index” 或 “Ei”,那么发表在该期刊上的文章一般都会被EI检索。
对于会议文章:
查看会议官方网站的“Indexing”信息。
权威的会议通常会明确声明“已被EI Compendex检索”。但需要警惕,有些会议可能会虚假宣传。
2. 利用其他权威数据库辅助判断
一些知名的学术数据库也收录了大量EI源刊,可以作为很好的参考。
IEEE Xplore:在IEEE上发表的文章,很多都被EI检索。在文章页面,通常会直接显示索引信息,如“INSPEC, EI Compendex”等。
SpringerLink / Elsevier (ScienceDirect):在这些大型出版商的平台上,文章页面通常也有“Indexing”信息,会注明是否被EI Compendex收录。
注意:这些平台显示的信息是一个很好的参考,但不能作为100%的最终依据。最保险的还是去方法一提到的Engineering Village官方平台确认。
方法三:其他辅助方法
1. 咨询图书馆员:大学图书馆的学科馆员是这方面的专家,他们可以为您提供最准确的指导和查询服务。
2. 参考已有列表:一些学术论坛或院系会整理常见的EI期刊/会议列表,可以作为参考,但需要注意列表的时效性,因为EI收录的期刊名单是动态更新的。
总结与核心要点
为了更清晰,您可以遵循以下流程图来判断:
核心要点与提醒:
区分“发表”和“检索”:文章在EI源刊上发表,不代表一定会被EI数据库检索。通常有一个时间差(如发表后1-3个月)。
警惕虚假信息:尤其对于会议,一定要核实其真实性。一些“野鸡会议”会虚假宣称被EI收录。
动态性:EI收录的期刊列表会变化,有的期刊可能会被剔除,所以要用最新的信息来判断。
最简单直接的结论:
最可靠的方法就是通过您学校或单位的图书馆链接,登录Engineering Village(EI Compendex)官方数据库,直接搜索文章标题。能查到并显示“Compendex”,就是被检索了。
会议论文EI指的是被收录在EI Compendex数据库中的会议论文。下面为您详细解释一下:
核心概念:什么是 EI?
EI 的全称:是 Engineering Index 的缩写,中文叫“工程索引”。
本质:它是一个全球范围内的文献数据库,类似于我们熟知的“知网”,但级别和范围要高得多。它主要收录工程技术领域的优质文献。
运营方:由美国的 Elsevier(爱思唯尔) 公司运营。
核心部分:我们通常所说的“EI收录”,特指收录到其核心数据库 EI Compendex 中。这是衡量论文质量的一个重要标准。
所以,当人们说“这是一篇EI会议论文”时,其完整的意思是:“这篇在学术会议上发表的论文,被EI Compendex数据库收录了。”
会议论文与EI的关系
学术会议是研究者交流最新成果的重要平台。会议结束后,会出版会议论文集。
流程:会议主办方会与EI数据库协商,将本会议的论文集提交给EI进行评审。
评审:EI会对会议的质量、历史、论文水平等进行评估。
收录:如果会议通过评估,那么在该会议上发表的所有论文(或大部分高质量论文)就会被EI Compendex数据库收录。
检索:论文被收录后,会在EI数据库中建立索引,全球的研究者都可以通过该数据库检索到这篇论文。通常所说的“EI检索”就是指这个意思。
EI会议论文的认可度与价值
国际认可:EI是全球三大核心学术检索系统(SCI、EI、ISTP/CPCI-S)之一,在国际上,尤其在工程技术领域,具有很高的认可度。
国内认可:在中国,EI收录的论文在:
硕士/博士毕业:很多高校要求硕士或博士研究生必须发表一定数量的EI或SCI论文才能毕业。
奖学金评定:是评定国家奖学金等重要奖项的关键指标。
职称评审:是高校教师、科研人员晋升职称的重要学术成果。
项目申请:在申请科研基金项目时,EI论文是体现研究者科研能力的有力证明。
注意:EI会议论文的含金量存在差异。顶级会议的EI论文(如IEEE、ACM等知名机构主办的会议)难度和认可度非常高,甚至不亚于一些SCI期刊。但也有一些质量一般的会议,其EI论文的含金量相对较低。
如何确认一个会议是EI收录会议?
在投稿前,务必确认该会议是否真的会被EI收录。可以通过以下方式核实:
1. 会议官网:正规的会议官网通常会明确写明“所有录用论文将被EI Compendex收录”。
2. EI官方列表:访问EI官网,查询会议列表(但这个列表有时更新不及时)。
3. 往届记录:查看该会议往年的论文集是否已经被EI收录。
4. 主办方声誉:由IEEE、Springer、Elsevier等知名出版社或学术机构主办的会议通常比较可靠。
EI会议论文 vs. EI期刊论文
这是一个重要的区别:
特点 | EI 会议论文 | EI 期刊论文 |
---|---|---|
形式 | 在学术会议上发表 | 在学术期刊上发表 |
周期 | 短(从投稿到见刊通常几个月) | 长(通常半年到一年以上) |
审稿 | 相对较快,侧重于创新性和即时性 | 严格、周期长,通常有多轮修改,侧重于完整性和深度 |
内容 | 通常是阶段性、最新的研究成果 | 通常是更完整、更系统和深入的研究工作 |
认可度 | 一般低于同领域的期刊论文 | 一般高于会议论文 |
总结
“会议论文EI”是指被EI Compendex数据库收录的学术会议论文。它是工程技术领域一项重要的学术成果,在国内外高校和科研机构中获得广泛认可,是衡量科研水平的关键指标之一。但在选择会议时,需要注意会议的质量和声誉,因为不同EI会议论文的含金量差别很大。
SCI会议论文是学术道路上的“优质快车”,而SCI期刊论文是“终极目的地”之一。下面我们从几个方面详细拆解它的“用处”和“局限性”。
一、SCI会议论文的用处(优点)
1. 快速传播研究成果
会议的审稿和出版周期通常比期刊短得多(几个月 vs. 一两年)。这让你能迅速将最新的研究想法、初步成果或阶段性进展公之于众,抢占先机,确立优先权。
2. 获得高质量的同行反馈
顶级国际会议(如CVPR, NeurIPS, ICML, WWW, SIGCOMM等)的评审过程同样严格,评审意见具有很高的参考价值。你可以在短时间内获得领域内专家的宝贵意见,用于改进后续的研究工作。
3. 与国际同行建立联系
参加会议是融入学术圈最直接的方式。你可以当面与论文作者、领域大牛交流,获取灵感,寻找合作机会,甚至为将来的博士后或教职岗位铺路。
4. 学术认可度(尤其在某些领域)
在计算机科学、电子工程、人工智能等快速发展的领域,顶级会议的认可度极高,甚至不亚于顶级期刊。 例如,在AI领域,在NeurIPS、ICML、CVPR上发表一篇论文,其分量远超许多SCI期刊,是博士毕业、求职、评职称的硬通货。
在很多高校的博士毕业要求或奖学金评定中,高质量的SCI会议论文被列为重要甚至必需的成果。
5. 为期刊论文打下基础
很多研究者会选择将会议论文进行扩展和深化(通常需要增加30%以上的新内容),然后投递给SCI期刊。会议上的反馈为期刊论文的成功发表奠定了坚实基础。
二、SCI会议论文的局限性
1. 权威性和完整性通常低于期刊
期刊是“档案性”出版物,要求研究的完整性、严谨性和可重复性更高。审稿过程通常更细致、轮次更多,对实验设计和论证深度的要求也更高。
会议论文由于篇幅限制(通常为4-8页),往往只能展示核心思想和方法,难以展开所有细节。
2. 领域差异性大
在生命科学、化学、物理、材料等传统自然科学领域,期刊(尤其是高影响因子期刊)的权威性依然远远超过会议。在这些领域,会议论文通常被视为“会议摘要”或“初步交流”,分量较轻。
3. 会议质量参差不齐
“SCI会议”本身也有很多层次。有顶尖的、竞争激烈的顶级会议,也有普通的、甚至“灌水”的会议。发表在一个质量不高的SCI会议上,其价值会大打折扣,有时甚至不如一个好的中文核心期刊。
三、总结与建议
对比维度 | SCI会议论文 | SCI期刊论文 |
---|---|---|
发表速度 | 快(几个月) | 慢(半年到两年) |
篇幅与深度 | 短,核心思想 | 长,系统完整 |
审稿严格度 | 因会而异,顶尖会议极严 | 通常更严格、更细致 |
学术认可度 | 在CS/AI/EE等领域顶尖会议≈顶刊 | 在所有领域都是黄金标准 |
在传统自然科学领域认可度较低 | ||
主要作用 | 快速交流,获取反馈,建立网络 | 建立学术权威,体系化成果 |
给你的建议:
1. 明确你的领域惯例:咨询你的导师和师兄师姐,了解在你所在的学科,会议论文(尤其是哪些会议)的权重如何。这是最重要的第一步。
2. 瞄准顶级会议:如果决定投会议,尽量冲击本领域内公认的顶级会议。它们的声誉和认可度最有保障。
3. 理解你的目标:
如果你想快速毕业、求职(尤其是在工业界AI实验室),一篇顶会论文可能是最佳选择。
如果你想奠定深厚的学术基础、申请教职(尤其在传统学科),高质量的SCI期刊论文是不可替代的。
一个常见的成功策略是:“先会后期”,先在顶会上发表短文获得反馈和认可,再将完整版工作投往高水平的SCI期刊。
结论:SCI会议论文非常有用,但它是一种“情境性”的有用。 在你所属的学术圈子里,了解游戏的规则(是看重会议还是期刊),并据此制定你的发表策略,才能最大化你研究成果的价值。
博士参加学术会议是博士培养过程中至关重要的一环,其好处是多层次、全方位的,远不止是“开个会”那么简单。以下是博士参加学术会议的主要好处,可以分为几个层面:
一、 学术研究与个人成长层面
1. 展示研究成果,获得专业反馈
试炼场:可以将自己尚未发表或刚完成的研究在同行面前展示(通过口头报告或海报)。
宝贵意见:获得领域内专家和同行的直接反馈、质疑和建议,这些意见往往能帮助发现研究的盲点、开拓新思路,为后续修改论文、深化研究提供至关重要的方向。
建立自信:在公开场合清晰、有条理地阐述自己的研究,是博士生的核心能力之一,能极大提升学术自信和沟通能力。
2. 追踪前沿动态,激发科研灵感
超越文献:会议报告的内容通常是最新、尚未发表的研究成果,比阅读期刊论文能更早、更直观地了解领域内的最前沿动态和未来趋势。
交叉碰撞:聆听不同主题的报告,尤其是与自己研究方向相关但不完全相同的报告,容易产生“跨界”的灵感,找到新的研究切入点或技术方法。
3. 学习顶尖学者的报告技巧
观察领域内“大牛”如何做学术报告,包括PPT的制作、逻辑的构建、时间的掌控、与听众的互动以及应对尖锐提问的方式,这些都是课堂上难以学到的宝贵实战经验。
二、 学术网络与人际关系层面
1. 建立学术人脉
认识同行:结识来自世界各地的同龄博士生和青年学者,他们是未来长期的合作者、审稿人甚至竞争对手。这种“同辈网络”非常重要。
接触领域专家:有机会与心仪的教授、期刊编辑、项目评审专家进行面对面交流,给他们留下印象。可以主动提问、介绍自己的研究,甚至预约简短的单独交流。
寻找博士后或工作机会:很多潜在的招聘和合作机会都是在会议的咖啡间、午餐桌上非正式地产生的。很多导师也会在会议上为自己实验室物色优秀的博士后。
2. 寻找潜在的合作机会
在交流中可能会发现彼此的技术或资源可以互补,从而开启新的合作项目。许多跨学科的合作都始于学术会议上的偶遇。
三、 职业规划与发展层面
1. 探索职业路径
通过会议可以了解到学术界以外的机会。很多会议设有工业界论坛、招聘会或企业展台,可以了解产业界的需求和研究方向,为未来进入工业界、政府或创业打开窗口。
2. 提升个人学术声誉
通过在会议上做一场出色的报告或展示一张精美的海报,可以在小圈子内初步建立自己的“品牌”和知名度。当别人提到某个研究方向时,会联想到你。
3. 为简历“镀金”
在简历/CV上,国际顶级会议的参与、特别是做口头报告或海报展示,是非常亮眼的经历,证明了其研究获得了同行认可,也体现了其主动参与学术社区的能力。
四、 心理与动力层面
1. 克服学术孤独感
博士研究常常是漫长而孤独的。参加会议能让人感受到自己是一个庞大、活跃的学术社区的一部分,看到这么多人在为共同的事业努力,能极大地缓解孤独感,重新激发科研热情。
2. 获得认同感与动力
当自己的研究得到他人的兴趣和肯定时,会带来巨大的成就感和满足感,为接下来应对科研中的挑战注入新的动力。
给博士生的参会小贴士:
提前准备:仔细阅读会议日程,圈定必听的报告。准备好自己的演讲和“电梯演讲”(用30秒到1分钟简要介绍你的研究)。
主动出击:不要害羞,主动与人交谈。可以从问一个问题开始:“您刚才的报告非常精彩,我有一个问题...”
善用社交活动:多参加茶歇、欢迎酒会、晚宴等非正式活动,这些才是建立深入联系的绝佳场合。
携带名片:即使是在校生,也可以制作简单的个人名片,包含姓名、学校、邮箱和研究方向,方便交换联系方式。
会后跟进:对重要的联系人,在会后一两周内发一封简短的邮件,表示感谢或进一步讨论。
总结来说,对于博士生而言,学术会议不仅仅是一个“学习”的地方,更是一个“参与”、“展示”、“连接”和“成长”的平台。它是从学生向独立研究者转变的关键一步,其价值会贯穿整个学术生涯甚至更远。