支持与服务

cloud
会议论文平台

AC会议论文平台致力于为国际学术会议组织者及参与者提供高效、稳定的全流程论文管理服务。我们支持论文提交、评审、收录和出版等环节,保障学术交流的严谨与顺畅。

cloud
会务平台

AC学术平台打造的一站式学术会议服务平台(TopChair),涵盖活动创建、在线注册、议程管理、现场签到及会后资料共享等多项功能,助力会议组织者轻松实现专业级的会务运营。

cloud
合作办会

我们欢迎高校、科研机构及学者依托本平台共同举办学术会议。平台提供免费的会议提交系统和高质量的出版支持,推动学术资源的开放共享与合作交流。

学术会议

近期截稿会议

CCF推荐

名称类别年份开会日期
SC: International Conference for High Performance Computing, Networking, Storage, and AnalysisA类20252025-11-16
EuroSys: European Conference on Computer SystemsA类20262026-04-13
HiPEAC: International Conference on High-Performance Embedded Architectures and CompilersB类20262026-01-26
HPDC: ACM Symposium on High-Performance Parallel and Distributed ComputingB类20262026-07-13
SPAA: ACM Symposium on Parallelism in Algorithms and ArchitecturesB类20252026-07-28
NPC: IFIP International Conference on Network and Parallel ComputingC类20252025-12-14
HiPC: IEEE International Conference on High Performance Computing, Data, and AnalyticsC类20252025-12-17
ASP-DAC: Asia and South Pacific Design Automation ConferenceC类20262026-01-19
名称类别年份开会日期
NSDI: Symposium on Networked Systems Design and ImplementationA类20262026-05-04
INFOCOM: IEEE International Conference on Computer CommunicationsA类20262026-05-18
MobiCom: ACM International Conference on Mobile Computing and NetworkingA类20262026-11-25
CoNEXT: ACM International Conference on emerging Networking EXperiments and TechnologiesB类20252025-12-01
HotNets: The Workshop on Hot Topics in NetworksC类20252025-11-17
IPCCC: International Performance, Computing, and Communications ConferenceC类20252025-11-23
Globecom: IEEE Global Communications Conference, incorporating the Global Internet SymposiumC类20252025-12-08
WCNC: IEEE Wireless Communications & Networking ConferenceC类20262026-04-13
名称类别年份开会日期
NDSS: Network and Distributed System Security SymposiumA类20262026-02-23
TCC: Theory of Cryptography ConferenceB类20252025-12-01
ASIACRYPT: Annual International Conference on the Theory and Application of Cryptology and Information SecurityB类20252025-12-08
ACSAC: Annual Computer Security Applications ConferenceB类20252025-12-09
ICDF2C: International Conference on Digital Forensics & Cyber CrimeC类20252025-11-17
IFIP WG 11.9: IFIP WG 11.9 International Conference on Digital ForensicsC类20262026-01-05
FC: Financial Cryptography and Data SecurityC类20262026-03-02
DFRWS-EU: Digital Forensic Research WorkshopC类20262026-03-23
名称类别年份开会日期
ASE: International Conference on Automated Software EngineeringA类20252025-11-16
POPL: ACM SIGACT-SIGPLAN Symposium on Principles of Programming LanguagesA类20262026-01-11
ICSE: International Conference on Software EngineeringA类20262026-04-12
ESEC/FSE: ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software EngineeringA类20262026-07-05
OOPSLA: Conference on Object-Oriented Programming Systems, Languages, and ApplicationsA类20262026-07-17
ISSTA: The International Symposium on Software Testing and AnalysisA类20262026-10-03
Middleware: ACM/IFIP/USENIX International Middleware ConferenceB类20252025-12-15
VMCAI: International Conference on Verification, Model Checking, and Abstract InterpretationB类20262026-01-11
名称类别年份开会日期
SIGMOD: ACM Conference on Management of DataA类20262026-05-31
CIDR: Biennial Conference on Innovative Data Systems ResearchB类20262026-01-18
WSDM: International Conference on Web Search and Data MiningB类20262026-02-22
ICDT: International Conference on Database TheoryB类20262026-03-24
EDBT: International Conference on Extending DB TechnologyB类20262026-03-24
PODS: ACM SIGMOD Conference on Principles of DB SystemsB类20262026-05-31
ECIR: European Conference on Information RetrievalC类20262026-03-30
PAKDD: Pacific-Asia Conference on Knowledge Discovery and Data MiningC类20262026-06-09
名称类别年份开会日期
FOCS: IEEE Symposium on Foundations of Computer ScienceA类20252025-12-14
STOC: ACM Symposium on Theory of ComputingA类20262026-06-22
FSTTCS: Foundations of Software Technology and Theoretical Computer ScienceC类20252025-12-17
CSL: Computer Science LogicC类20262026-02-23
名称类别年份开会日期
IEEE VR: IEEE Conference on Virtual Reality and 3D User InterfacesA类20262026-03-21
DCC: Data Compression ConferenceB类20262026-03-24
ICASSP: International Conference on Acoustics, Speech, and Signal ProcessingB类20262026-05-06
MMAsia: ACM Multimedia AsiaC类20252025-12-09
ICVRV: International Conference on Virtual Reality and VisualizationC类20252025-12-19
MMM: International Conference on Multimedia ModelingC类20262026-01-29
3DV: International Conference on 3D VisionC类20262026-03-20
PacificVis: IEEE Pacific Visualization SymposiumC类20262026-04-20
名称类别年份开会日期
NIPS: Annual Conference on Neural Information Processing SystemsA类20252025-12-02
AAAI: AAAI Conference on Artificial IntelligenceA类20262026-01-20
CVPR: IEEE Conference on Computer Vision and Pattern RecognitionA类20262026-06-03
ICRA: IEEE International Conference on Robotics and AutomationB类20262026-06-01
PRICAI: Pacific Rim International Conference on Artificial IntelligenceC类20252025-11-17
ACML: Asian Conference on Machine LearningC类20252025-12-09
ALT: International Conference on Algorithmic Learning TheoryC类20262026-02-23
AISTATS: International Conference on Artificial Intelligence and StatisticsC类20262026-05-02
名称类别年份开会日期
CSCW: ACM Conference on Computer Supported Cooperative Work and Social ComputingA类20262026-02-27
CHI: ACM Conference on Human Factors in Computing SystemsA类20262026-04-16
PerCom: IEEE International Conference on Pervasive Computing and CommunicationsB类20262026-03-16
IUI: ACM International Conference on Intelligent User InterfacesB类20262026-03-23
ECSCW: European Computer Supported Cooperative WorkB类20262026-06-29
CollaborateCom: CollaborateCom International Conference on Collaborative ComputingC类20252025-11-15
DIS: ACM conference on Designing Interactive SystemsC类20262026-06-13
名称类别年份开会日期
RTSS: Real-Time Systems SymposiumA类20252025-12-02
WWW: International World Wide Web ConferencesA类20262026-04-13
BIBM: IEEE International Conference on Bioinformatics and BiomedicineB类20252025-12-15
ISMB: International Conference on Intelligent Systems for Molecular BiologyB类20262026-07-12
CogSci: Cognitive Science Society Annual ConferenceB类20262026-07-22
MICCAI: International Conference on Medical Image Computing and Computer-Assisted InterventionB类20262026-10-04
AMIA: American Medical Informatics Association Annual SymposiumC类20252025-11-15
ICIC: International Conference on Intelligent ComputingC类20262026-07-22

学术期刊

学术动态

image
11-07
2025
原芝加哥大学讲席教授,全职加入西湖大学!

11月5日,据西湖大学消息,世界知名华裔化学家、材料化学家和肿瘤学专家,美国原芝加哥大学化学系James Franck讲席教授林文斌,于11月3日全职加入西湖大学理学院,任化学讲席教授、可持续发展与人类健康分子材料实验室负责人,同时在西湖大学医学院和工学院兼任职务。

林文斌简介

林文斌,国际知名分子材料化学家与化学生物学家,金属有机框架(MOF)领域的奠基者和引领者之一。

林文斌于1988年毕业于中国科学技术大学,获学士学位;在伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana–Champaign)师从 Ralph G. Nuzzo 教授与 Gregory S. Girolami 教授,于1994年获得博士学位。随后,他在西北大学(Northwestern University)师从 Tobin J. Marks 教授,作为美国国家科学基金会博士后(NSF Postdoctoral Fellow)从事研究工作。1997年至2001年在美国布兰迪斯大学(Brandeis University)化学系任助理教授;2001年至2013年在北卡罗来纳大学教堂山分校(University of North Carolina at Chapel Hill)化学系与药学院任教,期间历助理教授(2001–2003)、副教授(2003–2007)、教授(2007–2011)及Kenan 杰出教授(2011–2013)。2013年起,加入芝加哥大学,任化学系与放射与细胞肿瘤学系詹姆斯·弗兰克讲席教授。2025年,加入西湖大学任化学讲席教授,继续开展科学研究与人才培养工作。

林文斌的研究聚焦于分子材料的设计与开发,已发表477余篇经同行评议的学术论文,其成果被引用超过87,000次。自2014年起,他连续入选全球高被引化学家行列,并被评为1999–2009十年间全球单篇论文引用影响力前十位的化学家之一。他当选为美国科学促进会(2011)、欧洲科学院(2023)、美国国家发明家科学院(2024)及美国医学与生物工程院(2025)的院士。

来源:西湖大学,仅用于学术分享,如有侵权请联系删除。

image
11-06
2025
【ICCVIT 2025】第三届计算机、视觉与智能技术国际会议在保定成功举办

2025年10月31日-11月1日,第三届计算机、视觉与智能技术国际会议(ICCVIT 2025)在河北大学隆重召开。本次会议由河北大学主办,河北大学电子信息工程学院承办,淮北师范大学、湘南学院、湖南省计算机学会机器视觉与医学影像专业委员会、爱迩思出版社(ELSP)、ESBK学术交流中心、AC学术平台协办,IEEE北京分会提供技术支持,汇聚了来自国内外多个高校的专家学者,共同探讨计算机科学、人工智能、图像处理、智能制造、智能系统等领域的前沿研究与应用成果。

图1 会议现场合照

11月1日上午8:30分,大会隆重开幕。河北大学党委常委、副校长张锋出席,河北大学科学技术与创新研究院院长杨晓晖、淮北师范大学处长肖建于,淮北师范大学计算机科学与技术学院院长余磊,湘南学院计算机与人工智能学院院长刘耀辉,湘南学院计算机与人工智能学院副院长刘东以及河北大学电子信息工程学院负责人、师生代表、海内外学者200多人参加会议。

张锋在开幕式致辞,他简要回顾了河北大学的发展历程,肯定了本次会议在学术交流和科技合作方面的重要作用,并对莅临现场及线上参会的国内外嘉宾表示热烈欢迎与诚挚感谢。张锋表示,此次以ICCVIT会议为契机,电子信息工程学院积极加大对外交流与合作,不断扩大学院知名度,坚持以学科建设为龙头,促进科研水平再上新台阶,将学院建设为特色鲜明的一流工科学院。

图2  河北大学党委常委、副校长张锋致辞

本次会议主会场邀请欧洲人文与自然科学院外籍院士与欧洲科学院院士、上海交通大学自然科学研究院院长、上海交通大学金石教授,国防科技大学徐凯教授,南开大学郭青教授三位学者作主旨报告。河北大学电子信息工程学院青年教师扈琪在主会场做特邀学术报告。他们分别就人工智能视觉识别、智能计算架构与数据安全、智能机器人感知系统等主题发表了精彩报告,深入剖析了智能技术发展的最新趋势和应用方向。专家们的报告内容前沿、观点鲜明,引发了与会代表的热烈讨论。

图3 上海交通大学金石教授作主旨报告

图4 国防科技大学徐凯教授线上作主旨报告

图5 南开大学郭青作主旨报告

图6  河北大学扈琪副教授作特邀报告

当日下午,大会共设立三个主题分会场,特邀报告,学者报告,口头报告。来自多所高校和科研单位的报告人分享了自己的最新研究进展。学术氛围浓厚。

图组 分论坛现场

本次第三届计算机、视觉与智能技术国际会议(ICCVIT 2025)的成功举办,不仅为学者们搭建了跨领域、跨地域的学术交流平台,也进一步提升了河北大学在智能科学与信息技术领域的学术影响力。

image
11-06
2025
Rethinking anticancer nanoparticles from a biosafety perspective

A commentary published in Biofunctional Materials systematically discusses key issues regarding the biosafety of anticancer nanoparticles, involving risks arising from drug payloads, nanomaterial accumulation, and bio-corona formation. The article further provides a series of measures to improve safety, including adopting biodegradable materials, implementing surface engineering, and developing organ-specific delivery systems, aiming to promote the development of nanomedicine in a safer and more efficient direction.

As cancer continues to pose significant challenges to global healthcare systems, the emergence of nanomedicine has brought renewed hope for more effective treatments. The unique characteristics of nanoparticles—including the small size, enhanced permeability, and targeting capabilities—make them promising carriers for anticancer drug delivery. However, the rapid advancement of this technology has outpaced systematic evaluation of its potential biosafety risks, creating an urgent need for comprehensive safety assessment protocols.

image: Potential toxicity mechanisms of anticancer nanoparticles, highlighting contributions from the nanomaterials, payload, and bio-corona that can result in cell damage.

Credit: Zhengwei Huang/Jinan University

A research team from Jinan University has recently addressed this critical gap through a detailed analysis published in BM. The review, led by Dr. Zhengwei Huang and first author Naixuan Deng, systematically examines the multifaceted safety concerns associated with anticancer nanoparticles. "While nanomedicine offers promising therapeutic possibilities, we must ensure that safety considerations keep pace with innovation," emphasizes Dr. Huang. "Our analysis reveals that the toxicity of nanoparticles involves not only the encapsulated drugs but also the carrier materials themselves and their complex interactions with biological systems"

The researchers identify three primary sources of potential toxicity: the payload, the nanomaterial carriers, and the dynamic bio-corona formed when nanoparticles enter biological environments. Even when successfully encapsulated within nanoparticles, chemotherapeutic agents like doxorubicin maintain their inherent toxicity properties, with potential leakage or prolonged circulation leading to unintended accumulation in healthy tissues. Temperature and pH-responsive delivery systems present additional challenges, as physiological variations can trigger premature drug release in non-targeted areas.

Nanomaterial carriers themselves pose significant safety concerns. Lipid-based nanoparticles can trigger complement activation and allergic reactions, while metallic nanoparticles such as gold and silver nanoparticles, exhibit size-dependent toxicity and tend to accumulate in vital organs. The degradation products of these materials, particularly metal ions released during nanoparticle breakdown, can interfere with cellular pathways and induce oxidative stress even at low concentrations.

Perhaps the most complex challenge is the formation of bio-corona—where biomolecules spontaneously adsorb onto the surface of nanoparticles in biological environments. These dynamic layers can fundamentally alter the behavior of nanoparticles, obscuring targeting molecules and promoting immune recognition. "The formation of bio-corona represents a critical factor that can completely change how nanoparticles interact with biological systems," explains Deng. "The composition of these coronas varies between individuals, making standardized safety assessment particularly challenging."

In response to these identified risks, the research team proposes various approaches to enhance the safety of nanoparticle. They advocate for selecting drugs with higher tumor cell selectivity and implementing advanced surface modifications to improve targeting specificity. The use of naturally derived, biodegradable materials such as lecithin and albumin is recommended to reduce the risk of long-term accumulation. To address the challenges posed by bio-corona, the researchers suggest implementing antifouling strategies using biomimetic surface coatings to resist protein adsorption.

The team also emphasizes the importance of developing organ-specific delivery strategies, such as inhalable nanoformulations for lung cancer and topical applications for skin cancer, to reduce off-target exposure. These approaches, combined with comprehensive toxicological evaluation standards, could significantly improve the safety characteristics of anticancer nanoparticles.

Looking forward, researchers stress that thorough safety assessment should become a central part of nanomedicine development. This involves detailed studies on how these drugs behave in the body and their long-term effects. Dr. Huang concluded, "We can’t just focus on whether the treatment works; we must also ensure its safety. Only by addressing safety concerns can nanomedicine truly deliver on its promise."

The research team hopes their comprehensive analysis will inspire more systematic safety evaluations in nanomedicine development, ultimately leading to more reliable and clinically viable cancer treatments.

This paper ”Revisit the biosafety of anticancer nanoparticles” was published in Biofunctional Materials.

Deng N, Huang Y, Gao Y, Wu C, Huang Z. Revisit the biosafety of anticancer nanoparticles. Biofunct. Mater. 2025(4):0016, https://doi.org/10.55092/bm20250016.

Source from [https://www.eurekalert.org/news-releases/1104520].

image
11-06
2025
AI-driven nanomedicine breakthrough paves way for personalized breast cancer therapy

A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits of FDA-approved nanodrugs, and innovative approaches to address tumor heterogeneity and treatment resistance. This serves as a foundational framework and pragmatic guide for enhancing precision-based breast cancer therapies.

image: Intelligent delivery and clinical transformation of nanomedicine in breast cancer: from basic research to individualized therapy.

Credit: Yimao Wu/Shanghai Jiao Tong University School of Medicine, Guangdong Medical University,China; Zichang Chen/Guangdong Medical University; Xiaoyan Chen/Guangdong Medical University; Meng-Yao Li/ Shanghai Jiao Tong University School of Medicine, Shanghai Jiading District Central Hospital

Breast cancer, the most common cancer among women worldwide, is a major therapeutic challenge because of its profound heterogeneity. Breast cancer can be classified into several molecular subtypes, such as Luminal A, HER2-positive, and triple-negative breast cancer (TNBC), and a treatment that is effective for one patient may not work for another. In addition to this intrinsic heterogeneity, drug resistance and serious side effects have prompted the pursuit of more accurate and precise therapeutic strategies.

Nanomedicine, utilizing engineered nanoparticles for targeted drug delivery to tumors, presents a promising avenue for future treatment strategies. However, the design of an appropriate nanocarrier for individual patients has historically been a complex and often inefficient process of trial and error. The multitude of potential design parameters, including size, surface charge, and targeting ligand density, leads to a combinatorial explosion that is not feasible to test experimentally.

In this review, researchers from Shanghai Jiao Tong University School of Medicine and Guangdong Medical University have proposed a novel, data-driven solution to address the aforementioned challenge. They introduce an "AI-multi-omics intelligent delivery paradigm," in which a machine learning model is utilized to predict the optimal design of nanocarriers. This prediction is based on the unique biological signatures specific to a patient's tumor.

"We have transitioned from a universal, one-size-fits-all methodology to a subtype-specific, intelligent drug delivery system," states corresponding author Meng-Yao Li. "Many studies demonstrate that the incorporation of multi-omics data with artificial intelligence can effectively simplify complex processes. For example, in the case of aggressive Luminal B tumors, our model significantly enhanced the synchronization between drug release and peak tumor proliferation rates, increasing it by a factor of 2.8 compared to traditional static nanocarriers."

The review methodically delineates the manner in which this paradigm capitalizes on subtype-specific vulnerabilities. In the case of HER2-positive breast cancer, the utilization of trastuzumab-conjugated dendrimers resulted in a reduction of off-target toxicity by 47%. For the treatment of TNBC, a notoriously difficult-to-treat subtype, the employment of EGFR-antibody liposomes amplified tumor accumulation by a factor of 3.2.

The study also presents a comprehensive review of the current state of clinical nanomedicine, ranging from FDA-approved drugs such as Doxil?—which significantly decreases the cardiotoxicity of doxorubicin from 18% to 3%—to promising therapies currently under clinical trials. Notably, preliminary results for 22?Ac-liposomes indicate that 77.8% of patients with metastatic TNBC achieved stable disease status for a duration of six months or longer, without any observed bone marrow toxicity.

"The potential is profound," elucidates Yimao Wu, a co-first author of the review. "This transcends mere incremental advancements. It offers a viable roadmap to engineer health, morphing breast cancer from a perilous disease into a manageable condition via personalized nanotherapeutic intervention."

The authors recognize that issues related to large-scale manufacturing and long-term safety continue to impede clinical adoption. Nevertheless, with the incorporation of AI, multi-omics data, and biomimetic nanocarriers such as exosomes, the trajectory of breast cancer treatment is on course to be notably more accurate and efficacious in the future.

This paper ‘Intelligent delivery and clinical transformation of nanomedicine in breast cancer: from basic research to individualized therapy’ was published in Biofunctional Materials (ISSN: 2959-0582), an online multidisciplinary open access journal aiming to provide a peer-reviewed forum for innovation, research and development related to bioactive materials, biomedical materials, bio-inspired materials, bio-fabrications and other bio-functional materials.

Citation: Wu Y, Chen Z, Chen X, Li M. Intelligent delivery and clinical transformation of nanomedicine in breast cancer: from basic research to individualized therapy. Biofunct. Mater. 2025(3):0014.https://doi.org/10.55092/bm20250014

Source from [https://www.eurekalert.org/news-releases/1103244].

查询EI会议的往届检索记录,最可靠的方法是直接通过官方数据库Engineering Village(EV)进行核查,并结合其他渠道进行交叉验证。这个过程能帮助你有效评估一个会议的可靠性和历史表现。

为了让你一目了然,我将整个核查流程整理成了下面的图表:

官方数据库查询(核心方法)

Engineering Village (EV) 是EI Compendex的官方检索平台,在这里查询到的信息最为权威。

- 进入会议列表:登录EV平台后,可以找到 “Browse Indexes” 或类似的索引浏览功能,在其中选择 “Conference List” 。

- 搜索目标会议:在会议列表中,你可以通过会议名称的关键词、举办年份、主办单位等信息进行搜索。一个专业的会议名称通常具有连续性和稳定性。

- 验证往届记录:这是最关键的一步。在找到目标会议后,重点查看它最近3年的会议记录是否都被EI收录(例如,查找2022、2023、2024年的记录)。如果一个会议能连续多年稳定被收录,通常说明其质量可靠。

- 深入检查论文:点击已收录的往届会议条目,系统会显示该会议的所有论文列表。你可以尝试输入一篇已知的往届论文标题进行搜索,如果能查到记录,并显示`[Abstract]`或`[PDF Full-Text]`链接,则证明该会议集的收录是实在的。

其他验证渠道

除了官方数据库,还有一些非常可靠的辅助验证方法:

- 学术出版商平台:许多EI会议会与IEEE Xplore、SpringerLink、Elsevier等国际知名出版商合作出版会议论文集。你可以在这些出版商的网站上找到会议集的主页,页面上有时会直接标注“EI Compendex indexed”之类的字样,这是一个积极的信号。

- 高校图书馆与权威机构:国内许多顶尖高校(如清华大学、上海交通大学等)的图书馆会为校内师生提供学术会议导航系统或预警系统。这些系统通常会集成EI/SCI收录会议信息,并进行可信度分级或风险提示,非常有参考价值。此外,像中国知网的《国际重要会议检索目录》 以及一些省级科技情报研究院也提供相关的查证服务。

重要查询技巧与避坑指南

在查询和判断过程中,掌握一些技巧能让你事半功倍,并避开常见的陷阱。

关注关键标识:在验证时,可以特别留意以下信息:

- ISBN号:绝大多数EI检索的会议论文集都拥有国际标准书号(ISBN)。

- 会议代码(Conference Code):在EV平台中,一些会议会有唯一的会议代码,利用它可以更精确地定位。

- 收录号(Accession number):EI数据库会为每一条收录的记录分配一个唯一的收录号,这是论文被正式收录的直接证明。

警惕常见风险:需要特别警惕以下几种情况的会议:

- 承诺“100%录用和检索”:正规学术会议必有评审流程,此类承诺违反学术常规。

- 审稿周期过短:例如少于一周,这通常意味着缺乏严格的同行评议。

- 往届记录无法验证:会议官网对自己往届被EI收录的情况语焉不详,或无法提供任何证明。

- 会议名称模仿权威会议:故意起一个与顶级国际会议相似的名字,容易造成混淆。

理解检索时滞:论文在会议上发表后,并不会立刻被EI数据库收录。这中间通常有2到4个月,甚至更长的处理时间。因此,在查询最近一届的会议时,如果暂时查不到,可以先确认下距离会议结束的时间有多久。

高额的版面费(APC)确实是评判期刊时需要警惕的一个信号,但它并不直接等同于“水刊” 。在学术界,确实存在一些收费高但质量也高的顶级期刊,同时也混杂着一些利用高收费牟利的“水刊”。

为了帮助你快速建立判断思路,下面这个表格概括了高APC期刊的不同类型及其核心特征。

特征维度高质量高APC期刊疑似“水刊”/“掠夺性期刊”
收费与价值APC高昂,但提供顶尖的同行评审、编辑加工、全球传播和长期存档服务,价值与费用匹配。收费与服务质量严重不匹配,版面费成为主要甚至唯一目的。
学术指标影响因子稳定,位于学科Q1/Q2区;自引率健康(通常低于10%);享有较高的学术声誉。影响因子异常剧烈波动或暴涨自引率异常偏高(超过15%甚至30%);或存在“互引联盟”等操纵嫌疑。
运营特征严谨、透明的同行评审,有明确的审稿流程和质量标准,审稿周期合理。审稿流程极快(如几天内接受),审稿意见缺乏建设性甚至“来者不拒”;发文量巨大且连年激增
出版社声誉通常隶属于知名且信誉良好的出版社(如ACS, Elsevier, Springer Nature等)。可能来自声誉存疑的出版社,或正规出版社旗下被特定期刊。

学会辨别“水刊”的关键信号

除了高APC,你更需要关注以下几个“危险信号”,它们更能揭示一本期刊的“含水量”:

-   异常高的自引率:这是最危险的信号之一。如果一本期刊的引用主要来自于它自己发表的文章,其影响因子的真实性就非常可疑。通常,自引率超过15%就需要警惕,超过30%则高度危险。

-   发文量巨大且激增:当一本期刊的年发文量成百上千,并且连年呈指数级增长,你需要思考其是否还能维持严格的审稿标准。例如,有期刊年发文量可达上万篇。

-   审稿过程“放水”:宣称“极速审稿”(如几天内录用),或者作者普遍反映审稿意见草率、缺乏实质修改建议,几乎不拒稿,这些都是放弃学术坚守的表现。

-   作者地域高度集中:如果某国(尤其是中国)作者的比例异常偏高(例如超过70%),可能暗示该期刊存在“学术近亲繁殖”或特定的市场运营策略,其国际性和学术公正性可能受到影响。

给你的投稿避坑指南

在选择期刊时,你可以采取以下主动策略来避开陷阱:

-   多方核查信息:不要只看期刊官网的宣传。利用 Web of Science的JCR 数据库查询官方影响因子和自引率;在 Scopus 上查看CiteScore趋势;访问 Retraction Watch 数据库查询撤稿记录。

-   关注官方预警名单:许多机构和高校会发布期刊预警名单。重点关注中国科学院文献情报中心每年发布的《国际期刊预警名单》,以及你所在单位或目标基金委的内部名单。

-   咨询学术共同体:在小木虫、ResearchGate等科研社区查询或提问,了解其他同行的真实投稿经验和评价。

-   评估自身研究的价值:最后,回归根本。如果你的研究扎实、创新性强,不妨自信地挑战那些历史悠久、声誉卓著的学会期刊(如美国物理学会的Physical Review系列)或顶级期刊,它们往往不收取或收取较低的版面费,其发表本身就是对学术价值的认可。

希望这些信息能帮助你更理性地看待期刊版面费,做出明智的选择。

关于EI会议中的“short paper”或“poster paper”是否会被检索,核心答案在于论文本身是否达到EI Compendex的收录标准,而与它是全文、短文还是海报论文没有绝对关系。不过,这类短文因其篇幅和内容深度的限制,在检索上确实面临更大的不确定性。

下面这个表格清晰地列出了不同情况下被EI收录的可能性,你可以快速了解:

论文类型被EI Compendex收录的可能性关键影响因素
常规会议论文 (Full Paper)较高通常需通过严格的同行评审,内容具有完整性和创新性。
Short Paper / Poster Paper不确定,有可能内容质量是核心:即便篇幅短,也需具备完整的学术价值、创新点和实验数据出版形式:必须被收录进大会正式出版的会议论文集中。会议方政策:部分会议可能只将长论文送交EI,投稿前务必与会议方确认。

理解EI的收录标准

根据搜索结果,EI Compendex数据库在决定是否收录一篇会议论文时,主要考量以下几个维度:

- 学术质量与创新性:这是最重要的标准。论文必须是原创性研究成果,能够提出新的观点、方法或结论,并对相关领域有所贡献。EI会评估研究方法是否科学、数据是否真实可靠。

- 实用性:研究成果最好能够服务于社会,解决实际的工程或技术问题。

- 表达的规范性:论文的语言表达需要清晰准确,逻辑结构严谨,图表规范,能够有效传达研究成果。这直接影响到评审专家对论文价值的判断。

- 出版规范:论文必须通过严格的同行评审流程,并被纳入正式出版的会议论文集。这通常意味着会议需要与IEEE、Springer、Elsevier等权威出版机构合作。

如何查询与确认?

为了确保你的论文能够被EI收录,或者在投稿前规避风险,你可以采取以下措施:

1.  核实会议历史记录

在投稿前,请务必通过EI的官方平台 "Engineering Village" 进行查询。输入你目标会议的简称和过往年份(例如"ICME 2023"),查看其往届的会议论文是否被标注了"Compendex"标签。这是判断一个会议检索稳定性的最可靠方法。

2.  直接联系会议方

在会议的官方网站上,仔细查找关于短文和海报论文的收录政策。如有疑问,直接发送邮件询问会议组织者,确认"short paper"或"poster"是否与全文论文享有同等的出版和送交EI检索的机会。

3.  提升论文的录用几率

- 确保内容完整:即便篇幅有限,你的短文也应包含清晰的研究背景、方法、实验数据、结果分析和结论。

- 突出创新点:在摘要和引言中明确阐述你的工作与现有研究相比,创新和价值在何处。

- 严格遵循模板:使用会议官方提供的LaTeX或Word模板,避免因格式问题在初审阶段就被拒稿。

EI会议论文撤稿对作者的影响可大可小,关键取决于撤稿的具体原因和你的处理方式。简单来说,因诚实错误并主动撤稿,影响通常可控;但若涉及学术不端,则可能对你的学术生涯造成长期且严重的后果。

为了让你能快速建立一个整体印象,我先将撤稿的主要影响和关键应对策略汇总在下面的表格里。

影响维度主要后果关键应对策略
学术声誉区分显著:诚实错误并主动沟通,影响较小,甚至体现诚信;学术不端(如抄袭、造假)会严重损害声誉,可能被列入学术黑名单。主动与会议编辑部沟通,说明情况并申请撤稿。
职业发展基金申请:有撤稿记录的学者获资助几率可能显著下降。职称评审:撤稿论文不计入评审成果,并可能成为科研诚信项的减分依据。若是诚实错误,在申请基金时如实说明并提供撤稿声明,可将伤害降到最低。
科研绩效长期影响:职业生涯早期发生撤稿,可能导致后续职业生涯更短、撤稿率更高,并影响发文量和总被引频次。将早期撤稿指标以适当方式纳入科研人员综合评价体系。
合作网络撤稿后,研究人员的合作网络规模可能缩小通过会议等渠道积极与科学界互动,重建合作关系。

如何将撤稿的负面影响降到最低

如果不幸面临必须撤稿的情况,你的应对方式至关重要。

1.  主动沟通,坦诚说明

一旦发现论文存在需要撤稿的问题,应立即主动联系会议编辑部,详细说明撤稿原因。如果是无心之失,坦诚地沟通并接受撤稿,期刊或会议通常会发布一个双方同意的撤稿声明,这能最大程度地保护你的声誉。

2.  区分情况,灵活处理

轻微错误:如果错误不影响整体结论,可以尝试与编辑部沟通,看能否以发布勘误(Errata) 的方式代替完全撤稿。

严重错误:如果错误动摇了研究的根本,主动要求撤稿是唯一负责任的选择。这不仅是为了纠正错误,也是你作为研究者对科学记录承诺的体现。

3.  善用官方声明

在申请基金或面临考核时,如果被问及撤稿记录,务必诚实并提供官方的撤稿声明。基金审核单位会根据撤稿原因(诚实错误还是学术不端)来判断,前者的影响要小得多。

4.  着眼长远,重建信誉

撤稿后,通过持续产出高质量的研究来重建学术声誉至关重要。同时,积极参与学术共同体活动,也有助于恢复合作网络。

了解学术出版的变革

值得一提的是,整个学术出版界也在积极应对撤稿问题。从2025年开始,科睿唯安(Clarivate)宣布,被撤稿论文的引用将不再计入期刊影响因子(JIF)。这一政策旨在削弱问题论文对期刊评价的影响,鼓励出版社更积极地处理撤稿,从长远看,有助于营造一个更注重诚信的学术环境。

合作伙伴